Rapid Evolution Exposes the Boundaries of Domain Structure and Function in Natively Unfolded FG Nucleoporins*□S

نویسندگان

  • Daniel P. Denning
  • Michael F. Rexach
چکیده

Nucleoporins with phenylalanine-glycine repeats (FG Nups) function at the nuclear pore complex (NPC) to facilitate nucleocytoplasmic transport. In Saccharomyces cerevisiae, each FG Nup contains a large natively unfolded domain that is punctuated by FG repeats. These FG repeats are surrounded by hydrophilic amino acids (AAs) common to disordered protein domains. Here we show that the FG domain of Nups from human, fly, worm, and other yeast species is also enriched in these disorderassociated AAs, indicating that structural disorder is a conserved feature of FG Nups and likely serves an important role in NPC function. Despite the conservation of AA composition, FG Nup sequences from different species show extensive divergence. A comparison of the AA substitution rates of proteins with syntenic orthologs in four Saccharomyces species revealed that FG Nups have evolved at twice the rate of average yeast proteins with most substitutions occurring in sequences between FG repeats. The rapid evolution of FG Nups is poorly explained by parameters known to influence AA substitution rate, such as protein expression level, interactivity, and essentiality; instead their rapid evolution may reflect an intrinsic permissiveness of natively unfolded structures to AA substitutions. The overall lack of AA sequence conservation in FG Nups is sharply contrasted by discrete stretches of conserved sequences. These conserved sequences highlight known karyopherin and nucleoporin binding sites as well as other uncharacterized sites that may have important structural and functional properties. Molecular & Cellular Proteomics 6:272–282, 2007.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Rapid evolution exposes the boundaries of domain structure and function in natively unfolded FG nucleoporins.

Nucleoporins with phenylalanine-glycine repeats (FG Nups) function at the nuclear pore complex (NPC) to facilitate nucleocytoplasmic transport. In Saccharomyces cerevisiae, each FG Nup contains a large natively unfolded domain that is punctuated by FG repeats. These FG repeats are surrounded by hydrophilic amino acids (AAs) common to disordered protein domains. Here we show that the FG domain o...

متن کامل

Intramolecular Cohesion of Coils Mediated by Phenylalanine–Glycine Motifs in the Natively Unfolded Domain of a Nucleoporin

The nuclear pore complex (NPC) provides the sole aqueous conduit for macromolecular exchange between the nucleus and the cytoplasm of cells. Its diffusion conduit contains a size-selective gate formed by a family of NPC proteins that feature large, natively unfolded domains with phenylalanine-glycine repeats (FG domains). These domains of nucleoporins play key roles in establishing the NPC perm...

متن کامل

Disorder in the nuclear pore complex: the FG repeat regions of nucleoporins are natively unfolded.

Nuclear transport proceeds through nuclear pore complexes (NPCs) that are embedded in the nuclear envelope of eukaryotic cells. The Saccharomyces cerevisiae NPC is comprised of 30 nucleoporins (Nups), 13 of which contain phenylalanine-glycine repeats (FG Nups) that bind karyopherins and facilitate the transport of karyopherin-cargo complexes. Here, we characterize the structural properties of S...

متن کامل

Natively Unfolded Nucleoporins Gate Protein Diffusion across the Nuclear Pore Complex

Nuclear pore complexes (NPCs) form aqueous conduits in the nuclear envelope and gate the diffusion of large proteins between the cytoplasm and nucleoplasm. NPC proteins (nucleoporins) that contain phenylalanine-glycine motifs in filamentous, natively unfolded domains (FG domains) line the diffusion conduit of the NPC, but their role in the size-selective barrier is unclear. We show that deletio...

متن کامل

Entropy guards pore

Entropy guards pore T he rapid fl uctuations of fl exible FG repeat–containing nucleoporins (FG Nups) form an entropic barrier to would-be entrants into the nuclear pore complex (NPC), according to Roderick Lim (University of Basel, Switzerland) and colleagues. FG Nups, which consist of large natively unfolded domains, are the pore’s gatekeepers—they keep out proteins that are not bound to tran...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007